EXAMINATIONS COUNCIL OF ZAMBIA
Joint Examination for the School Certificate and General Certificate of Education Ordinary Level

ADDITIONAL MATHEMATICS 4030/2

PAPER 2
Thursday 11 November 2010 2 hours 30 minutes

Additional materials:
Answer Booklet
Mathematical tables/calculators

TIME: 2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES
Write your name, centre number and candidate number in the spaces on the separate answer booklet provided.

There are twelve (12) questions in this paper. Answer all questions.

Write your answers on the Answer Booklet provided.

If you use more than one Answer Booklet, fasten the Answer Booklets together.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION FOR CANDIDATES
The number of marks is shown in brackets [] at the end of each question or part question.
The total number of marks for this paper is 100.

The use of a non-programmable electronic calculator is expected, where appropriate.

Cell phones should not be brought in the examination room.

Check the formulae overleaf
Solve the simultaneous equations

\[3x - y + z = 8\]
\[x + 2y - z = 6\]
\[2x + y + z = 9\] \[6\]

(a) Calculate the number of arrangements of the word 'DISCOVERY'. \[1\]

(b) A group of 7 pupils is to be chosen from 11 boys and 3 girls. Find the number of ways of choosing

(i) 7 pupils if there are no restrictions. \[2\]

(ii) at least 5 boys. \[3\]

(a) By using an appropriate substitution, find the values of \(x\) such that
\[2(4^x) + (4)^x = 3.\] \[7\]

(b) \[3\log_c 2 + \log_c 18 = 2.\] Find \(c.\) \[7\]

The points P(-2,2), Q(4,4) and R(5,2) are vertices of a triangle. The perpendicular bisector of PQ and the line through P parallel to QR intersect at S. Find the coordinates of S. \[7\]

(a) Find the range of the function \(f : x \to 2x^2 + 3x + 4\) for the domain \(-3 \leq x \leq 2\). \[5\]

(b) Find the range of values of \(c\), given that for all values of \(x\),
\[x^2 - 4x + c > 0.\] \[3\]

The functions \(f\) and \(g\) are defined by
\[f : x \to \frac{ax + 6}{x}, x \neq 0\]
\[g : x \to \frac{x + 1}{x - 3}, x \neq 3.\]

Find

\[(a) \quad g^2,\] \[3\]

\[(b) \quad g^{-1},\] \[2\]

\[(c) \quad \text{the value of } a \text{ for which } fg^2(4) = 6.\] \[3\]
8 (a) Find the coefficient of x^3 in the expansion of

(i) $\left(2 - \frac{3x}{2}\right)^8$. [2]

(ii) $(1 + 4x) \left(2 - \frac{3x}{2}\right)^8$. [3]

(b) Find the term independent of x in the expansion of $\left(x - \frac{1}{2x^2}\right)^{15}$. [3]

9 (a) Two variables x and y are related by the equation $x^2y = 900$.

(i) Obtain an expression for $\frac{dy}{dx}$ in terms of x. [2]

(ii) Hence, find the approximate change in y as x increases from 10 to $10 + p$, where p is small. [3]

(b) A particle moves in a straight line, so that its velocity V m/s and time t seconds after passing a point B is given by $V = 8 - 4t$.

Find the distance from B

(i) after 3 seconds,

(ii) when it comes to rest. [4]

Find all the angles between 0° and 360° for which

(i) $3\sin\theta = 2\cos^2\theta$. [4]

(ii) $5\tan x = \frac{2}{\cos^2 x} - 9$. [5]

10 Two machines, X and Y, are used to pack sweets. A sample of 10 packets was taken from each machine and the mass of each packet, measured to the nearest gram, was noted.

<table>
<thead>
<tr>
<th>Machine X (mass in g)</th>
<th>196</th>
<th>198</th>
<th>198</th>
<th>199</th>
<th>200</th>
<th>200</th>
<th>201</th>
<th>201</th>
<th>202</th>
<th>205</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Y (mass in g)</td>
<td>192</td>
<td>194</td>
<td>195</td>
<td>198</td>
<td>200</td>
<td>201</td>
<td>203</td>
<td>204</td>
<td>206</td>
<td>207</td>
</tr>
</tbody>
</table>

(i) Find the standard deviation of the masses of the packets taken in the sample from each machine. [9]

(ii) Which machine is more reliable? [1]
(a) Find the equation of the normal to the curve \(y = x^2 + 7x + 15 \) at the point where \(x = -4 \). \[4\]

(b) The diagram below shows a line \(x + y = 6 \) and a curve \(y = \frac{5}{x} \) intersecting at A and B.

(i) Find A and B. \[2\]

(ii) Determine the volume obtained by rotating the shaded area around the x-axis through 360°. \[4\]

Answer only one of the following alternatives:

EITHER

(a) Given that \(y = \frac{8}{x^2} + \frac{x^3}{6} \), find the stationary value of \(y \) and determine whether it is a maximum or a minimum. \[4\]

(b) A cuboid has a total surface area of 150 cm\(^2\) and is such that its base is a square of side \(x \) cm.

(i) Show that the height, \(h \), of the cuboid is given by \(h = \frac{75 - x^2}{2x} \). \[2\]

(ii) Express the volume, \(v \), of the cuboid in terms of \(x \). \[1\]

(iii) Given that \(x \) can vary, find the value of \(x \) for which \(v \) has a stationary value. Find this value of \(v \) and determine whether it is a maximum or a minimum. \[5\]

OR

(a) The first three terms of a geometric progression are \(x + 2 \), \(x - 4 \) and \(x - 6 \). Find

(i) the value of \(x \), \[5\]

(ii) the sum to infinity of the geometric progression. \[5\]

(b) (i) Find the number of terms of the arithmetic progression 12, 16, 20,..., that must be taken for the sum to be equal to 672. \[3\]

(ii) The fourth term and the twenty second term of an arithmetic progression are 4 and 25 respectively. Determine the 50th term of the progression. \[4\]